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On the Least-Squares Analysis of the Rigid Body Vibrations
of Non-Centrosymmetrical Molecules

By G. S. PAwLEY*

Crystallographic Laboratory, Cavendish Laboratory, Cambridge, England

(Received 4 March 1963)

The need for refinement of the origin of the mean-square rotational tensor w;; for non-centrosym-
metrical molecules is investigated. The equations for the least-squares procedure are given, but a
cruder method is used to establish that the refinement is important to obtain meaningful results.
This is used on results for azulene, maleic anhydride and succinimide. Azulene presents a particular
problem for which & special refinement is suggested.

Robertson, Shearer, Sim & Watson (1962) use the
method of Cruickshank (1956) to analyse the an-
isotropic temperature factors obtained from the
least-squares refinement of azulene. This gives the
translational and rotational mean-square displace-
ment tensors 7';; and wi;.

Previously Cruickshank (1957a, b) had applied this
method to naphthalene and anthracene with con-
siderable success. In both of these examples the
molecule is centrosymmetrical, and therefore there
is no ambiguity of choice for the origin of the molecular
axes. This origin must clearly be at the centre of

* Now at the Department of Chemistry, Harvard Univer-
sity, Cambridge, Massachusetts, U.S.A.

symmetry. The rotational tensors obtained by
Cruickshank are therefore in the inertial coordinate
system, describing rotations about the centre of
symmetry.

However, azulene presents a different problem.
The crystal belongs to the space group P2i/a, and
as there are only two molecules in the unit cell, this
suggests a centrosymmetrical molecule placed about
one quarter of the crystal symmetry centres. But the
azulene molecule has no centre of symmetry and is
found to exist in the crystal randomly in two orienta-
tions related to each other by the crystal centre of
symmetry.

Robertson ef al. (1962) used this centre as the
origin for the tensor wi; and obtained the results
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653 012 048
Ty = { 4-57 037 } Az10-2
3-37
@
1710 045 246
wi; = l 13-40 —2-63 ] deg2
27-83

with an estimated standard deviation of the Uy of
0-0107 Az,

It would seem most reasonable to choose the
centre of gravity of the molecule as the origin for the
tensor wi;, which is near to but not quite coincident
with the crystal centre of symmetry. With this
ambiguity of choice of origin it is of interest to find
how the tensors T';; and w; vary with the choice
of origin.

These tensors were calculated, by means of a
program written for the EDSAC by D. G. Watson,
with origins at 1, 2 and 3 A from the crystal sym-
metry centre towards the atom A (Fig. 1, Robertson
et al., 1962). The first of these gave

6-24 052 —-0-40
Ti]' = [ 5'2]. -‘0'44 :‘
574
2)
1-86 —2-54 177
wiy = [ 393 —279 }
17-34

which has estimated standard deviations of all
components less than those given by Robertson et al.
The estimated standard deviation of the Uy was
0-00934.

At 2 and 3 A towards 4 the tensors

6-55 049 —042 7
Ty = [ 541 —0-38
598 |
(3)
—131 -—205 1-14 7
wij = { 167 —1-32
8:82 |
and
6-66 047 —044 7
Ty = [ 526 —0-39
6-01 |
(4)
—-196 —1-56 078 7
Wi = [ 099 —-0-79
5-51 |

respectively were obtained. These have some negative
diagonal components which are physically impossible
and " therefore cannot be expected to fit the ex-
perimental results.

This analysis implies that the optimum choice of
origin lies between the crystal symmetry centre and
the atom A and within 1 A of the former. The differ-
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ences between (1) and (2), especially in wi, suggest
that the choice of origin in non-centrosymmetrical
molecules is of great importance in obtaining meaning-
ful results. This origin should be chosen to fit the
experimental results as accurately as possible.

This can best be done by a least-squares refine-
ment, which involves finding the best fit to the
experimental results of the two tensors 7'; and wy
each with six independent components, where the
origin of wy is given by R(X, Y, Z). X, Y and Z
are the only variables additional to those dealt with
by Cruickshank (1956). This enlarges the least-
squares matrix, making it 15 by 15, which contains
the 12 by 12 matrix of Cruickshank, M. We see
later that the new components of this matrix are
functions of R and wy, which means that the best
fit cannot be obtained by solving one matrix equation.
Instead, the matrix has to be set up a number of
times, each time using the values of R and wy; found
from the previous solution. Therefore initial values of
R and wi; must be given, and some criterion to
terminate the refinement.

Let ro(zo, yo, 20) be the position coordinates of an
atom with respect to the origin of the molecular
coordinate system, and let r(z, y,z) be the position
coordinates with respect to the origin of the tensor wiy.
Thus

x=x0— X elc.

Let us simplify the usual notation by putting 1, 2,
3, 4, 5 and 6 as subscripts for ¢j=11, 22, 33, 23, 31
and 12 respectively for the components of the tensors.
Equations of the type (2-3) of Cruickshank (1956)
are then written

Ur=T1+22w2 +y2ws—2yzws
Us=Ts—~yzw1—22ws+ 2y ws+2xwse . 5)

Equations (2-5) to (2-8) are here applicable, to which
must be added

0X

oU
<3_X2> = —2rxws-+2zws
oUs
<3— = —2xw2+2ywse
oU, -9
(a—'X—> = ZXW4—YwWs—2We
(20 -

P = zZwz—Ywq

oU
<3X6> = Ywz—2w4 . (6)

The normal equations written in matrix form are
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0
2zws5 — 2xw3
2yws — 2z ws

2xwq — yws — 2we
202 — Yw4
Yz —2z2mw4

M| [2y%(yws—aw2)
+ 222(2ws — xws)
+y2(yws + 2we — 2zw4)]

...............

[22(yws + 206 — 22w4)
+xy (22 — Yw4)
+ 22 (yws — 204)]

...............

2204 — 2yws 2ywa— 22wo
0 2zws — 2201
2xws — 2yw, 0

21 — TWs Yw1—Zwe
2yws — 2we — xwa Twe —Yws

T3 — zws 2206 — 24—~ Yws
[2y*(xws — yo1)
+yz(zws —2w1)]

[22%(xws —2w1)
+y2(rwe — yw1))

..............................

...............

[4yz(yws —z2w4)

[4yz(zws — ywa)

+2%(zws — zwy) + 22(Twe — yws )
+2x(xws — 2s) +2y(xws — ywe)

+ 2y (2yws — zwe — xwa)] +22(22w6 — yows — xwa)]

..............................

[4(xws — 2ws)?
+4(2we — ywe)?
+ (221 — yws — zwe)?
+ (22 — yw4)?
+ (yws — 24)?]

...............

N~

[4(zw2 — ywe)(yw: — xws)
+ (2%wa — yws — zws)

(zw1 - st)
+ (2yws — xws 2727 E
(w2 — yewa)

+ (yws —zw4) (Tw3 — 2s)]

...............

..............................

Y2Us+22Us—y2U,

2Ur+ 22Uz —2z2Us

22U+ y2Us—2yUs
—22Us+xyUs+2aUs — 292U,
—y?Us+yzUs+xyUs— 222U
—22Us+20Us+yzUs — 2ayUs

[2U2 (205 — 2w3) + 2Us(yws — zcws)
+ Ua(22w4s — yors — 2we)
+ Us(zws — ywa) + Us(yws —2w4)]

.....................

()

where M, the matrix of Cruickshank, requires re-
arrangement for the different order of the variables.
Here a line of dots denotes a similar matrix element.

As the terms of this equation are rather cumber-
some, it seemed wise first to use a somewhat crude
but easily programmed method, based on trial and
error. The variables were altered by predetermined
steps after finding which direction of alteration would
diminish the sum

Z(Uobs - Ucalc)2-

When the values of the variables oscillated, the steps
were reduced and the process continued.

The results for azulene were the first to be analysed.
The origin of the mean-square rotational tensor of
azulene was confined to the molecule plane, and
during the refinement moved 0-53 A from the crystal
symmetry centre to the point marked * in Fig. 1.
The resulting tensors were
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5-940 0608 —0-375
Ty = { 4910 —0-503 ] Az.10-2
5315
(8)
771 —1-56 1-77
wy = [ 6-94 —4-06 ] deg?
24-61

giving an estimated standard deviation of the Uy
of 0-00815 A2. This is a better fit with experiment
than that found by Robertson et al., being significant
on the 29 level of the F-distribution.

Fig. 1. Azulene, showing the axes nsed by Robertson et al.
(1962), the centre of gravity of the molecule, the deviations
in A from the mean molecular plane, and the best origin
for w4 in the molecular plane.

Robertson et al. compare their results with those
found for naphthalene. Their conclusion that the
greatest amplitude of translational vibration is along
the long axis of the molecule is upheld, although the
fit with experiment for azulene is far poorer than
that for naphthalene. They obtain in refinement an
R index of 6-5% which is normally beyond suspicion.
However they stress that as the structure is disordered
this brings atoms of the molecule in one orientation
very close to different atoms of the oppositely orien-
tated molecule, for six out of the ten atoms. Conse-
quently the least-squares method gives large errors
for all bond lengths which involve these six atoms,
and only three bond lengths have an error of 0-007 A
or less. Bonds involving one of the six atoms have
errors greater than 0-019 A, and bonds between pairs
from these six atoms have errors greater than 0-026 A,

The rotational tensor is most affected by the results
of the outermost atoms, but these are the atoms which
fall into pairs of overlapping atoms. Because of the
proximity of the atoms of each pair, their parameters
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must suffer from interaction in the least-squares
refinement.

In order to obtain a solution without these inter-
actions, we should have to assume that the temper-
ature parameters for all the atoms are determined
by the two tensors, Ty and w, and that the origin
of wi; is not the centre of gravity of the molecule.
There would then be one scale factor, thirty atomic
coordinates, twelve tensor components and three
coordinates for the origin of wi, all to be refined,
in all 46 instead of the 91 used by Robertson et al.
The resulting R index would be larger than 6-5%,
owing to the reduction in the number of parameters
refined, and this might then renew doubts as to
whether the structure really is disordered, since
Robertson et al. quote an R index of 22:4%, with
only isotropic temperature factors but with an ordered
crystal structure.

Owing to the inaccuracies in the thermal parameters
of azulene we cannot use this example to support the
theory that the origin of wi is not necessarily the
centre of gravity of the molecule. Two other crystals,
maleic anhydride and succinimide, whose structures
have recently been determined by the least-squares
method by Marsh, Ubell & Wilcox (1962) and Mason
(1961), were chosen to continue the study. Orthogonal
coordinates were taken along the z, y and z axes of
these orthorhombic crystals, -the centres of gravity,
the principal inertia axes, and the Ugs were found,
using the procedure described for azulene. The results
were first analysed with the origin of wi at the
centres of gravity, and the results obtained are as
follows.

For maleic anhydride,

[ 5-200 0202 —0-126
Ty = 6-120 0-601 } A210-2
L 6-985
9)
34-666 0-931 6-466
wij = [ 41-053  —0-487 } deg?
15-420

giving an estimated standard deviation of the Uy
of 0-00605 Az.
For succinimide,

1-078 0-144 0-366
Ty =[ 1484 0-201 } Az10-2
2423
(10)
4-912 —2-165 2232
Wiy = { 25-037 0-094 ] deg?
36-093

giving an estimated standard deviation of the Uy

of 0-00702 Az,

The origin of wy was then refined, and when the
convergence was very slow the origin had moved by
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0-332 A and 0-448 A for the two examples respectively.
Figs. 2(a) and (b) show the two molecules, their
intermediate and minor inertia axes, the deviation
in A from the maximum inertia plane, the centres
of gravity and the origins of the tensors w;;, marked .
The divisions along the axes are in A. The tensors
obtained are, for maleic anhydride,

4-657 0-207 0-092
Ty = [ 6-110 0-616} A2.10-2
6-928
(11)
34-680 2740 15-610
wij = [ 40-000 2:742 | deg?
40-280

with an estimated standard deviation of the Ui of
0-00434 A2, and for succinimide,

0-758 0-103 0-392
Ty = [ 1-609 0~205} A2.10-2
2:470
(12)
2:622  —2-521 3-261
Wiy = l: 24-730 7199 | deg?
46-150

with an estimated standard deviation of the Uij of
0-00602 Az,

The improvement thus obtained for maleic an-
hydride is significant at the 29 level, though for
succinimide the improvement is significant at the
16% level. Although the latter level is high, the
theory to be tested is that the origin of w;; is not
necessarily the centre of gravity. In some cases
therefore we should expect the origin to be very near
if not coincident with the centre of gravity. Improve-
ments will of course depend on the accuracy of the
initial Fops and the amount of refinement done.
Maleic anhydride reached an R index of 559, for
479 reflexions, and succinimide reached 9-19% for
705 reflexions, somewhat poorer. The results here
obtained are therefore considered to support the
theory, and to justify investigation of the least-squares
method.

RIGID BODY VIBRATIONS OF NON-CENTROSYMMETRICAL MOLECULES

0018 O(1)

|

@

0-018

Fig. 2. (a) Maleic anhydride. (b) Succinimide. Each of these
shows the inertia axes which intersect at the centre of
gravity of the molecule, the deviations in A from the
plane of maximum inertia, and the best origin for wgj in
this plane.
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