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On the Least-Squares Analysis of the Rigid Body Vibrations 
of Non-Centrosymmetrical  Molecules 
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The need for refinement of the origin of the mean-square rotational tensor eo~j for non-centrosym- 
metrical molecules is investigated. The equations for the least-squares procedure are given, but  a 
cruder method is used to establish that  the refinement is important to obtain meaningful results. 
This is used on results for azulene, maleie anhydride and succinimide. Azulene presents a particular 
problem for which a special refinement is suggested. 

Robertson,  Shearer,  Sire & Watson  (1962) use the  
method  of Cruickshank (1956) to analyse  the  an- 
isotropic t empera tu re  factors obtained f rom the 
least-squares ref inement  of azulene. This gives the 
t rans la t iona l  and  ro ta t ional  mean-square  displace- 
ment  tensors T,~ and  co,f. 

Previously  Cruickshank (1957a, b) had  applied this 
method  to naphtha lene  and anthracene  with  con- 
siderable success. I n  both of these examples  the 
molecule is centrosymmetr ical ,  and therefore there 
is no ambigui ty  of choice for the origin of the molecular 
axes. This origin mus t  clearly be a t  the centre of 

* Now at the Department of Chemistry, Harvard Univer- 
sity, Cambridge, Massachusetts, U.S.A. 

symmet ry .  The ro ta t ional  tensors obtained by  
Cruickshank are therefore in the  inert ial  coordinate 
system, describing rota t ions  about  the  centre of 
symmetry. 

However,  azulene presents  a different  problem. 
The crysta l  belongs to the space group P21/a, and  
as there are only two molecules in the  uni t  cell, this  
suggests a centrosymmetr ica l  molecule placed about  
one quar te r  of the crystal  s y m m e t r y  centres. Bu t  the  
azulene molecule has no centre of s y m m e t r y  and  is 
found to exist in the crystal  r andomly  in two orienta- 
tions re la ted  to each other by  the crystal  centre of 
symmet ry .  

Rober tson et al. (1962) used this  centre as the  
origin for the  tensor coi~, and obtained the  results  
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6.53 0.12 0.48 ] 
Ti l  = 4.57 0.37 ]~e.10 -~ 

3.37 

17.10 0.45 2.46 ] 
w~ = 13-40 -- 2-63 deg ~ 

27.83 

with an estimated standard deviation of the U~j of 
0.0107 ~ .  

I t  would seem most reasonable to choose the 
centre of gravi ty  of the molecule as the origin for the 
tensor w~j, which is near to but  not quite coincident 
with the crystal centre of symmetry.  With this 
ambiguity of choice of origin it is of interest to find 
how the tensors T~j and (o~j vary  with the choice 
of origin. 

These tensors were calculated, by means of a 
program written for the EDSAC by D. G. Watson, 
with origins at  1, 2 and 3 _~ from the crystal sym- 
metry  centre towards the atom A (Fig. 1, Robertson 
et al., 1962). The first of these gave 

6.24 0.52 
T,~ ---- 5-21 

1.86 - 2 . 5 4  
w~3" = 3.93 

- 0 . 4 0  ] 

- 0 . 4 4  

5.74 

1.77 ] 
- 2 . 79  
17.34 

which has estimated standard deviations of all 
components less than those given by Robertson et al. 
The estimated standard deviation of the U,j was 
0.00934. 

At 2 and 3 J~ towards A the tensors 

and 

6.55 0.49 - 0 . 4 2  ] 
T~j -- 5.41 - 0.38 

5.98 

-- 1.31 --2.05 1.14 ] 
o~  -- 1.67 - -  1 . 3 2  

8'82 

6.66 0.47 --0'44 ] 
T,j = 5.26 - 0.39 

6.01 

-- 1.96 -- 1-56 0.78 ] 
wi~ ---- 0.99 - 0.79 

5-51 

ences between (1) and (2), especially in wn, suggest 
tha t  the choice of origin in non-centrosymmetrical 
molecules is of great importance in obtaining meaning- 

(l) ful results. This origin should be chosen to fit the 
experimental results as accurately as possible. 

This can best be done by a least-squares refine- 
ment, which involves finding the best fit to the 
experimental results of the two tensors T~ and wtj 
each with six independent components, where the 
origin of coo is given by R ( X ,  Y ,  Z) .  X ,  Y and Z 
are the only variables additional to those dealt with 
by Cruickshank (1956). This enlarges the least- 
squares matrix, making it  15 by 15, which contains 
the 12 by 12 matr ix of Cruickshank, M. We see 
later tha t  the new components of this matr ix are 
functions of R and w~j, which means tha t  the best 
fit cannot be obtained by solving one matrix equation. 
Instead, the matr ix  has to be set up a number of 
times, each time using the values of R and w~j found 
from the previous solution. Therefore initial values of 
R and w~j must be given, and some criterion to 
terminate the refinement. 

Let r0(x0, y0, z0)be the position coordinates of an 
atom with respect to the origin of the molecular 
coordinate system, and let r(x, y, z) be the position 
coordinates with respect to the origin of the tensor w~j. 

(2) Thus 
x - -  x o -  X etc. 

(3) 

(4) 

respectively were obtained. These have some negative 
diagonal components which are physically impossible 
and" therefore cannot be expected to fit the ex- 
perimental results. 

This analysis implies tha t  the optimum choice of 
origin lies between the crystal symmetry  centre and 
the atom A and within 1 /~ of the former. The differ- 

Let us simplify the usual notation by putt ing 1, 2, 
3, 4, 5 and 6 as subscripts for i j = l l ,  22, 33, 23, 31 
and 12 respectively for the components of the tensors. 
Equations of the type (2"3) of Cruickshank (1956) 
are then written 

U1 -= T1 + z2w2 + y2w3 - 2yz~4  

U4 = T d -  y z w l  - x~w4 + xyoJ5 + zxw6 . (5) 

Equations (2.5) to (2"8) are here applicable, to which 
must be added 

~ x / = 0  

~X ] -- - 2xw3 + 2zw~ 

~ X  ] = - 2 x w e  + 2yw6 

- ~ - ]  = 2xo . )4 -ya)5- -  zw8 

- 6 X ]  = z w 2 - y w 4  

( ~U~ 
~ X  ] = yo,)a-- zo,)4 . (6) 

The normal equations written in matr ix form are 
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M 

0 2zoga- 2yoga 

2zo~5 - 2xcoa 0 

2yw6 - 2xw~. 2x~o6 - 2yo9~ 

2 x c o 4 -  yco5 - zo96 zo91 - xw5 

~.o~. - -  y w 4  2yw5 --  z(06 - x¢04 

yo-)3 - Z 0 9 4  X ( D 3  - -  Z 0 9 5  

[ 2 y 2 ( y w 6 -  xw~) [2y~(xw6- yw~) 
+ 2z~(zw~ - x09~) + yz(xog~--  z~o~)] 
+ yz(y09~ + zw6 - 2x0~4)] 

• • • • • • • , o . ° . . . . 
• • • • ° ° ° o ° . . o o . . 

• ° o ° o . . . . . . . . .  o o o o . o . o . o . ° . ° . ° 

[x~(yog~ + zo96 -- 2xwd) [ d y z ( y o ~  --  zwd) 

+ xy(z-w2 - y094) q- x2(x095 - zx01) 
+ zx (yw~  - z(.04) ] ' ] -  z x ( x ( , 0 3  - Z(_D5) 

+ xy(2yog~ - z096 - xo~4) ] 
• ° • • • ° • o . ° . ° o ° . 

. o o . o . ° o ° . o . ° . o  

. o . o . ° . . o . . o ° o o  

2 y o 9 ~ -  2zo)2 

2xw5 - 2z~ol 

0 

yw~ - xw6 

2 z e o 6 -  x ~ -  yw5 

[2z~'(x~o~-~) 
+ y z ( x ~ 6  - yog~)] 

° • ° • • • o o o ° o . o . o 

[4yz(zo~2 -- y~04) 
+ x2(xw6 - y w l )  

+ x y ( x w e  - yw6) 
+ z x ( 2 z o ~ 6 -  yo~5-- x094)] 
° . o . o . o o o o o o o o o  

[4(xo~8- zcos) 2 
+ 4(xw~. -- y096)2 
+ (2xw4-- y¢05 -- zw6) 2 
-{- (~92 - yo)4)2 
+ (yo~8-  z~o~)2] 

• • • • • • ° • . . ° , . ° ° 

• • • ° • • • • . . ° ° o o . 

[4(x¢02 -- yco6 ) ( yo~l -- xw6 ) 
+ (2x¢04 -- yc05 -- z096) 

( ~  - x~o~) 
+ (2y¢o5 - x~6 - x¢o4) 

( ~ 2  - yco4) 
+ (yog~ - zeo4)(x¢o3 - z¢o5)] 

• ° • ° • • ° • o o . o . o . 

• • • • • ° ° ° o . . ° . o . 

I Q O O Q O $ O Q O O O Q Q O  

O O O O O 0 0 e O O O O O 0 0  

T1 
T~ 
T3 
T4 
T5 
T6 
601 

0)2 

093 

604 

605 

(D6 

X 

Y 
Z 

u1 
U2 
U8 
U4 
U5 
U6 

y ~ U 3 q - z 2 U ~ . - y z U 4  
z ~ U 1  + x 2 U3 - z x  U5 
x 9 Ug. + y2 U1 - x y U 6  

- x 2 U4 + x y  U5 + z x  U6 - 2 y z  U1 
_ y2 U5 + y z  U8 + x y  Ua - 2 z x  U~. 
- z2U6 q- z x U 4  q - y z U 5 -  2 x y U 8  

[2 U2(z~os - xws)  + 2 U s ( y o ~ -  xw2) 
+ U4(2xo94 -- y095 -- ze06) 
+ Us(zoo2- yo~4)+ U6(yo~3-  z~04)] 

• . . o  o .  o . . . * * . ,  o . . .  o . .  

(7) 

where M, the matrix of Cruickshank, requi res  re- 
a r r a n g e m e n t  for  the  d i f ferent  order  of the  var iables .  
He re  a line of dots  denotes  a s imi lar  m a t r i x  e lement .  

As the  t e rms  of this  equa t ion  are  r a t h e r  cumber-  
some, i t  seemed wise f i rs t  to use a s o m e w h a t  crude 
bu t  eas i ly  p r o g r a m m e d  me thod ,  based  on t r ia l  a n d  
error.  The var iab les  were  a l t e red  by  p r e d e t e r m i n e d  
s teps a f t e r  f inding which direct ion of a l t e r a t ion  would  
d imin ish  the  s u m  

X ( U o b ~ -  U~alo)2. 

W h e n  the  values  of the  var iab les  oscil lated,  the  s teps  
were  reduced  a n d  the  process cont inued.  

The resul ts  for azulene were the  f i rs t  to be ana lysed .  
The origin of the  mean - squa re  ro t a t iona l  t ensor  of 
azulene was  confined to the  molecule  plane,  a n d  
dur ing  the  r e f inemen t  m o v e d  0.53 A f rom the  c rys ta l  
s y m m e t r y  centre  to  the  po in t  m a r k e d  , in Fig.  1. 
The resul t ing  tensors  were 
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5.940 0.608 -0 .375 1 
T,j = 4.910 - 0-503 /~.10 -~' 

5.315 
(8) 

7.77 --1.56 1.77 1 
wij = 6.94 -- 4.06 deg 2 

24.61 

giving an estimated standard deviation of the U,j 
of 0.00815 ~ .  This is a better fit with experiment 
than that  found by Robertson et al., being significant 
on the 2% level of the F-distribution. 

X 

.-0.026 

• 0 . 0 5 i ~ / ~  ~ - 0 . 0 0 8  C(10) ~ / C(2) 

o-oo4m----- _ _~c(3~o ooI) 

~ )seudocentre'~ 

Fig. 1. Azulene, showing the axes used by Robertson et al. 
(1962), the centre of gravity of the molecule, the deviations 
in /~ from the mean molecular plane, and the best origin 
for eoii in the molecular plane. 

Robertson et al. compare their results with those 
found for naphthalene. Their conclusion that  the 
greatest amplitude of translational vibration is along 
the long axis of the molecule is upheld, although the 
fit with experiment for azulene is far poorer than 
that  for naphthalene. They obtain in refinement an 
R index of 6.5% which is normally beyond suspicion. 
However they stress that  as the structure is disordered 
this brings atoms of the molecule in one orientation 
very close to different atoms of the oppositely orien- 
tated molecule, for six out of the ten atoms. Conse- 
quently the least-squares method gives large errors 
for all bond lengths which involve these six atoms, 
and only three bond lengths have an error of 0-007 A 
or less. Bonds involving one of the six atoms have 
errors greater than 0-019 A, and bonds between pairs 
from these six atoms have errors greater than 0.026 -~. 

The rotational tensor is most affected by the results 
of the outermost atoms, but these are the atoms which 
fall into pairs of overlapping atoms. Because of the 
proximity of the atoms of each pair, their parameters 

must suffer from interaction in the least-squares 
refinement. 

In order to obtain a solution without these inter- 
actions, we should have to assume that  the temper- 
ature parameters for all the atoms are determined 
by the two tensors, T,j and w,j, and that  the origin 
of w,j is not the centre of gravity of the molecule. 
There would then be one scale factor, thirty atomic 
coordinates, twelve tensor components and three 
coordinates for the origin of co,j, all to be refined, 
in all 46 instead of the 91 used by Robertson et al. 
The resulting R index would be larger than 6.5%, 
owing to the reduction in the number of parameters 
refined, and this might then renew doubts as to 
whether the structure really is disordered, since 
Robertson et al. quote an R index of 22"4%, with 
only isotropic temperature factors but with an ordered 
crystal structure. 

Owing to the inaccuracies in the thermal parameters 
of azulene we cannot use this example to support the 
theory that  the origin of w,j is not necessarily the 
centre of gravity of the molecule. Two other crystals, 
maleic anhydride and succinimide, whose structures 
have recently been determined by the least-squares 
method by Marsh, Ubell & Wilcox (1962) and Mason 
(1961), were chosen to continue the study. Orthogonal 
coordinates were taken along the x, y and z axes of 
these orthorhombic crystals, t he  centres of gravity, 
the principal inertia axes, and the Uobs were found, 
using the procedure described for azulene. The results 
were first analysed with the origin of ~o,j at the 
centres of gravity, and the results obtained are as 
follows. 

For maleic anhydride, 

5.200 0.202 -0 .126 1 
Tlj - 6.120 0-601 -~2.10-~ 

6.985 
(9) 

34.666 0.931 6.466 ] 
o~lj = 41.053 - 0"487 deg 2 

15.420 

giving an estimated standard deviation 
of 0.00605 A 2. 

For succinimide, 

of the U,j 

1-078 0.144 0.366 1 
T~j -- 1.484 0"201 .~. 10-9 

2.423 
(10) 

4-912 --2-165 2.232 1 
~o~j = 25.037 0.094 deg 2 

36.093 

giving an estimated standard deviation of the Utj 
of 0.00702 A- 2. 

The origin of oPij was then refined, and when the 
convergence was very slow the origin had moved by 
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0.332/~ and 0.448 A for the two examples respectively. 
Figs. 2(a) and (b) show the two molecules, their 
intermediate and minor inertia axes, the deviation 
in A from the maximum inertia plane, the centres 
of gravi ty  and the origins of the tensors coij, marked . .  
The divisions along the axes are in A. The tensors 
obtained are, for maleic anhydride, 

4-657 0.207 0"092 ] 
T~ = 6.110 0.616 /~2.10-9 

6.928 
(11) 

34.680 2.740 15.610 ] 
co~ = 40-000 2"742 deg 2 

40.280 

with an estimated standard deviation of the U~l of 
0.00434 /~,  and for succinimide, 

0"758 0-103 0"392 ] 
Tij = 1"609 0-205 A%10 -9. 

2"470 
(12) 

2"622 --2"521 3"261 ] 
co~j = 24.730 7.199 deg 9. 

46.150 

with an estimated standard deviation of the Uq of 
0"00602 A ~'. 

The improvement thus obtained for maleic an- 
hydride is significant at  the 2% level, though for 
suecinimide the improvement is significant at  the 
16% level. Although the lat ter  level is high, the 
theory to be tested is that  the origin of coi~ is not 
necessarily the centre of gravity. In some cases 
therefore we should expect the origin to be very near 
if not coincident with the centre of gravity. Improve- 
ments will of course depend on the accuracy of the 
initial Fobs and the amount of refinement done. 
Maleic anhydride reached an R index of 5.5% for 
479 reflexions, and succinimide reached 9.1% for 
705 reflexions, somewhat poorer. The results here 
obtained are therefore considered to support the 
theory, and to justify investigation of the least-squares 
method. 

Y 

0.003 = =@OOl 

- ~  \ , /  -o.o11 
0'018 0(I ) 0(6) 

(0) 

0"018 ] Y - 0-012 

(b) 

Fig. 2. (a) Maleic anhydride. (b) Succinimide. Each of these 
shows the inertia axes which intersect at the centre of 
gravity of the molecule, the deviations in /~ from the 
plane of maximum inertia, and the best origin for eoij in 
this plane. 
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